Time–frequency shift invariance and the Amalgam Balian–Low theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shift invariance and the neocognitron

-We investigate the ability of the neocognitron to perform shift-invariant pattern recognition. Both an intuitive analysis and a more formal investigation show that the performance of the neocognitron is not intrinsically shift invariant, and that certain model parameters must be chosen appropriately to obtain approximate shift invariance. It is shown how these parameters should be chosen to re...

متن کامل

A Simple Invariance Theorem

J. W. Lindeberg’s elegant proof of the Central Limit Theorem [15, 16], despite being in the shadow of Fourier analytic methods for a long time, is now well known. It was revived by Trotter [25] and has since been used successfully to derive CLTs in infinite dimensional spaces, where the Fourier analytic methods are not so useful. For more information on this topic, see the survey paper [3] and ...

متن کامل

Shift-invariance in the Discrete Wavelet Transform

In this paper we review a number of approaches to reducing, or removing, the problem of shift variance in the discrete wavelet transform (DWT). We describe a generalization of the critically sampled DWT and the fully sampled algorithme à trous that provides approximate shift-invariance with an acceptable level of redundancy. The proposed over complete DWT (OCDWT) is critically sub-sampled to a ...

متن کامل

The spectral shift function and the invariance principle

The new representation formula for the spectral shift function due to F. Gesztesy and K. A. Makarov is considered. This formula is extended to the case of relatively trace class perturbations.

متن کامل

Shift-Invariance Sparse Coding for Audio Classification

Sparse coding is an unsupervised learning algorithm that learns a succinct high-level representation of the inputs given only unlabeled data; it represents each input as a sparse linear combination of a set of basis functions. Originally applied to modeling the human visual cortex, sparse coding has also been shown to be useful for self-taught learning, in which the goal is to solve a supervise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2016

ISSN: 1063-5203

DOI: 10.1016/j.acha.2015.04.003